Studies on Pyrrolidinones: Some Attempts to Improve the Synthesis of
 by Using N-Acyl Iminium Salts Methodologies.
 Anne Bourry, Franck Pitard and Benoît Rigo*
 Groupe de Recherche sur l'Inhibition de la Prolifération Cellulaire (EA 2692), Ecole des Hautes Etudes Industrielles, 13, rue de Toul, 59046 Lille, France

Gérard Sanz
Janssen Research Foundation, Campus de Maigremont, 27106 Val de Reuil, France
Fabrice Camus, Bernadette Norberg and François Durant
Laboratoire de Chimie Moléculaire Structurale, Facultés Universitaire Notre-Dame de la Paix, 61 rue de Bruxelles, 5000 Namur, Belgique

Daniel Couturier
Laboratoire d'Ingéniérie Moléculaire, Université des Sciences et Technologies, 59655 Villeneuve d'Ascq, France
Received June 15, 2000

Abstract

Some ways to use the N-acyl iminium salt methodologies to synthesize a new inhibitor of tubulin polymerization, methyl N-(3,4,4',5-tetramethoxybenzhydryl)pyroglutamate (HEI 81) were studied. The most interesting reactions utilize a new pyroglutamic lactone (3-(3,4,5-trimethoxyphenyl)dihydropy-rrolo[1,2-c]oxazole-1,5-dione).

J. Heterocyclic Chem., 39, 109 (2002).

We recently described [1] the synthesis of azaanalogs $\mathbf{1}$ of the efficient anticancer agent podophyllotoxin (2) that interacts with tubulin at the colchicine (3) site [2]. From all the cyclic compounds synthesized, only the strict analog 4 of podophyllotoxin (2), yields inhibition of tubulin polymerization $\left(\mathrm{IC}_{50}=5 \mu M\right)$, but none had interesting antitumor activity in the standard NCI test [3]. Esters and acids 5 which are the starting materials for compounds $\mathbf{1}$ were also submitted to the same screening. Methyl $N-\left(3,4,4^{\prime}, 5-\right.$ tetramethoxybenzhydryl) pyroglutamate (HEI 81) (6) emerged from these tests. The middle anticancer properties of HEI $81\left(\mathrm{IC}_{50}=4.110^{-7} \mathrm{M}(\right.$ MCF-7 cells $\left.)\right)$ are interesting because of its atypical structure. This compound is related to combretastatin A-4 (7) [4] and phenstatin (8) [5] (Scheme 1), but to date it was assumed important that the junction of the aromatic rings in these series was realized by a sp2 carbon atom [5]. Important also is the $50-60^{\circ}$ dihedral angle between the aromatic rings of active compounds [6]. In HEI 81, a $\pi-\pi$ interaction orients the methyl ester group just above the trimethoxyphenyl ring, imposing a dihedral angle of 49° [7]. In this paper, we report some attempts to obtain compound $\mathbf{6}$ stereoselectively by using an N-acyl iminium salt methodology.
The previous synthesis of ester 6, starting from DLmethyl N -trimethylsilylpyroglutamate (9) yielded a 50/50 mixture of two racemics (Scheme 2) [1a]. The biologically active compound HEI 81 is the $R R$ enantiomer [8]. In order to obtain the right configuration of the aromatic
rings, we tried to utilize the methyloxycarbonyl group of methyl pyroglutamate to induce an asymmetric addition of anisole on an acyliminium salt $\mathbf{1 0 E}$ (Scheme 2). This approach is based on analog amidoalkylations of pyroglutamic acid derivatives. According to Roth [9], there are two reasons for a presumed stereoselectivity in such a reaction. 1: Steric hindrance of the methoxycarbonyl group on the lactam ring must direct the approach of the new aromatic ring as a nucleophile to the N -acyliminium ion from its opposite side. 2: The planarity requirements of the N acyliminium cation, with less steric repulsion, is better fulfilled by the E rotamer $\mathbf{1 0}$ than by the corresponding Z rotamer. In the beginning of this work, the exact configuration of HEI 81 was not known thus all the reactions described in this paper were realized starting from DL pyroglutamic acid [8a].

The first reaction based on Scheme 2 was realized by using silyl ether 11. The best yield of ester 6, among many other compounds, was 5% (boron trifluoride etherate, 1 equivalent/dichloromethane/24 hours/20 ${ }^{\circ} \mathrm{C}$) (Scheme 3). In order to test the reactivity of an aromatic other than anisole, the same reaction was performed with benzodioxole, with no more success. Interestingly when the catalyst was triflic acid (0.3 equivalent, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 4$ hours), diester $\mathbf{1 2}$ was isolated in 45% yield. The same yield of product $\mathbf{1 2}$ was obtained when compound $\mathbf{1 1}$ was treated with trimethylchlorosilane (4 equivalents, $70^{\circ} \mathrm{C}, 10$ hours). Due to the lack of symmetry in the structure of $\mathbf{1 2}$, the

Scheme 1

1

4

2 podophyllotoxin

$5 \quad \mathrm{R}=\mathrm{H}, \mathrm{Me}$ $\mathrm{R} 1, \mathrm{R} 2=\mathrm{H},(\mathrm{OMe})_{3}$

$$
\mathrm{Cl}, \mathrm{~F}, \mathrm{OCH}_{2} \mathrm{O}
$$

7 combretastatin A-4

3 colchicine

6 HEI 81

8 phenstatin

methyl ester groups yield two peaks (3.34 and 3.43 ppm) in ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum (Scheme 3). Confirmation of the spatial structure of diester $\mathbf{1 2}$ was obtained from the similarities of it's ${ }^{1} \mathrm{H}$ NMR spectrum with that of a rather similar compound B , for which X-ray analysis has been performed during another work (Figure 1) (Scheme 3) [19]. A possible route for the formation of compound $\mathbf{1 2}$ starts from hydrolysis of silyl ether 11: acid catalyzed elimination of
trimethylsilanol yields acyliminium salt 10 then water and methyl pyroglutamate $\mathbf{1 3}$ whose reaction with $\mathbf{1 0}$ yields $\mathbf{1 2}$ (Scheme 4). As for compound 11, it was formed [8b] by reaction of methyl N-trimethylsilylpyroglutamate (9) [10] with 3,4,5-trimethoxybenzaldehyde. Without catalyst, the yield of $\mathbf{1 1}$ was only $1 \%\left(100{ }^{\circ} \mathrm{C}\right.$, 1 hour), but it was obtained quantitatively when potassium trimethylsilanolate was added ($5 \%, 100^{\circ} \mathrm{C}$, 10 hours) (Scheme 3).

Scheme 3

Figure 1. ORTEP representation of compound B with ellipsiods at the 50% propability level.

In order to avoid hydrolysis of the precursor to the N -acyliminium salt 10 , reaction of methyl ether 14 with anisole was attempted (Scheme 5). No reaction was obtained without catalyst ($100{ }^{\circ} \mathrm{C}, 10$ hours), and decom-
position to trimethoxybenzaldehyde and ester $\mathbf{1 3}$ was observed with triflic acid (0.1 equivalent, $80^{\circ} \mathrm{C}, 8$ hours) or aluminum chloride (1 equivalent, $70{ }^{\circ} \mathrm{C}, 7$ hours). Interestingly, when the catalyst was boron trifluoride

$2 \mathrm{Me}_{3} \mathrm{SiOH} \longrightarrow \mathrm{Me}_{3} \mathrm{SiOSiMe}_{3}+\mathrm{H}_{2} \mathrm{O}$

Scheme 5

etherate (neat, 1 equivalent, $20^{\circ} \mathrm{C}, 24$ hours), the triphenylmethane $\mathbf{1 5}$ was obtained in 5% yield as the only one
isolated product. Ether 14 [8b] was obtained in 91 \% yield by performing an acid catalyzed condensation of methyl

N -trimethylsilylpyroglutamate (9) and trimethylsilyloxymethane with 3,4,5-trimethoxybenzaldehyde. No reaction was observed starting from methyl pyroglutamate (13) and trimethoxybenzaldehyde in methanol (triflic acid, 0.1 equivalent, 3 days, $70^{\circ} \mathrm{C}$) or trimethoxybenzaldehyde dimethyl acetal (boron trifluoride etherate, 1 equivalent, 10 hours, $20^{\circ} \mathrm{C}$) (Scheme 5).
Another possible way to obtain the acyliminium salt 10 was to start from a benzotriazole derivative [13]. Katritsky described such compounds, obtained from carbamates or lactams [14], whose reaction with another aromatic was described [15]. Starting compounds $\mathbf{1 6}$ and $\mathbf{1 7}$ of our projected synthesis (Scheme 7 and 8) were formed by the reaction of N-trimethylsilylbenzotriazole (18) [16] with the corresponding aldehyde (Scheme 6). Without catalyst, heating

14 hours at $100^{\circ} \mathrm{C}$ was necessary to obtain 96% of $\mathbf{1 7}$; by using a low amount of potassium trimethylsilanolate as catalyst, silyl ethers $\mathbf{1 6}$ and $\mathbf{1 7}$ were formed quantitatively at room temperature in 30 minutes (exothermic reaction). In a similar way as described for O-trimethylsilylbenzydrols [1a,1b,17], reaction of silyl ethers 16 or $\mathbf{1 7}$ with methyl N trimethylsilylpyroglutamate (9) gave a near quantitative yield of esters $\mathbf{1 9} \mathbf{a , b}$ or $\mathbf{2 0} \mathbf{a , b}$ as a $50 / 50$ mixture of two racemics which could be separated by recrystallization from ethyl acetate (Scheme 7). Interestingly, a ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum performed during the reaction show the formation of N trimethylsilylbenzotriazole (18) and the aromatic aldehyde. A possible route for this reaction is described in Scheme 7. During the reaction of $\mathbf{1 9}$ or $\mathbf{2 0}$ with anisole, whatever the catalyst used (aluminum chloride, zinc chloride, boron

Scheme 6

Scheme 7

fluoride or triflic acid), the solvent (methylene dichloride, carbon tetrachloride, nitromethane or anisole excess), and the temperature (room temperature or reflux), only decomposition of the reaction mixture was observed (Scheme 8).
(The X-ray spectrum of diacid B [19] (Scheme 3) is reported in Figure 1).

The reaction of lactone 21 with anisole was studied by using a variety of solvents (dichloromethane, chloroform,

19 or 20

Scheme 8

The last attempt to obtain stereoselectively HEI 81 through the addition of anisole on the acyliminium salt $\mathbf{1 0}$ was more successful. Failure of the former reactions described in this paper can be explained by reversion of $\mathbf{1 0}$ to the precursor A (Scheme 2, $\mathrm{X}=\mathrm{OMe}, \mathrm{OSiMe}_{3}$, benzotriazole) or by its decomposition caused by hydrolysis or methanolysis. We postulate that lactone 21 could be a pos-
dichloroethane, heptane, tetrahydrofuran, nitromethane), catalysts (aluminum chloride, zinc chloride, magnesium bromide, boron fluoride, bromotrimethylsilane, bismuth triflate, yttrium triflate, trimethylsilyl triflate, trifluoroacetic anhydride/trifluoroacetic acid mixture, silica) and temperatures $\left(0^{\circ} \mathrm{C}, 20^{\circ} \mathrm{C}\right.$, reflux) (Scheme 10). A selection of the results is given in Table 1.

Scheme 9

sible N-acyliminium precursor possessing less possibility for side reactions (Scheme 9) [18]. Thus compound 21 was synthesized from silyl ester 22 obtained by reaction of N, O-bistrimethylsilylpyroglutamic acid (23) [12] with 3,4,5-trimethoxybenzaldehyde (Scheme 9). The reaction giving the lactone 21 is based on a general approach on the cyclization of disilylated compounds [20]. Interestingly, silyl ether 22 was obtained as a 70/30 \% [8b] mixture of two racemics whose cyclization yield lactone 21 as a single stereoisomer (formation of an N -acyliminium salt can explain this result). A very small amount of dimer $\mathbf{2 5}$ could also be extracted from the reaction mixture (Scheme 9)

Table 1
Reaction of Lactone 21 with Anisole at $20^{\circ} \mathrm{C}$

Catalyst	Mole eq.	Solvent	$\mathrm{t}(\mathrm{h})$	Yield (\%)	Ratio
$\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{SiMe}_{3}$	0.1	dichloroethane	72	No reaction	
$\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$	0.7		96	48	$66 / 34$
$\mathrm{Mg} \mathrm{Br}_{2}$	1.7	dichloroethane	15	17	$66 / 34$
$\mathrm{BF}_{3} /$ ether	1	tetrahydrofuran	72	10	$60 / 40$
AlCl_{3}	0.5	nitromethane	48	47	$66 / 34$
AlCl_{3}	4	heptane	72	40	$71 / 29$
AlCl_{3}	4	nitromethane	12	34	$85 / 15$

As it can be observed from Table I, a mixture of acids 26a and 26b [1b] was always obtained. Attack of anisole on the endo face of the bicyclic lactone 21 can explain the formation of $\mathbf{2 6 b}$ or alternatively opening of the lactone ring can give an intermediate N-acyliminium salt as two rotamers $\mathbf{2 4 E}$ and 24Z (Scheme 10) [24]. Interestingly when silica was used as catalyst in nitromethane or methylene dichloride, nitrostyrene 27 or acid $\mathbf{2 5}$ were formed. Hydrolysis of lactone 21 can again explain these results (Scheme 11).

EXPERIMENTAL

Melting points are uncorrected. The ir spectra were recorded on a 'Perkin-Elmer' 700 spectrometer and the nmr spectra on a Varian 'Gemini 2000 ' at 200 MHz for ${ }^{1} \mathrm{H}$ and 50 MHz for ${ }^{13} \mathrm{C}$, using tetramethylsilane as an internal reference. Elemental analyses were performed by the «Service Central de Microanalyses» (CNRS, Vernaison, France). Melting points, ir spectra and elemental analyses were not determined for moisture sensitive com-

The diverse N-acyliminium salts syntheses described here are interesting and can be utilized for other projects, but because the pharmacomodulation realized on the structure of HEI 81 (6) didn't give an improvement of the biological properties [21], no more studies were performed in order to obtain a better synthesis of this compound.
pounds. Pyroglutamic acid was a gift of UCIB, Ivry-la-Bataille, France, which can provide this chemical in bulk quantities.
Methyl 1-[Trimethylsilanyloxy-(3,4,5-trimethoxyphenyl)methyl]pyroglutamate (11).

Methyl N-trimethylsilylpyroglutamate (9) (16.45 g, 0.076 mol) was added (syringe) to a mixture of 3,4,5-trimethoxybenzaldehyde $(15 \mathrm{~g}, 0.076 \mathrm{~mol})$ and potassium trimethylsilanolate $(0.375 \mathrm{~g}, 0.003 \mathrm{~mol})$. After heating at $100{ }^{\circ} \mathrm{C}$ for 10 hours a $100 \% \mathrm{nmr}$ yield of ester $\mathbf{1 1}$ was obtained.

Table 2
Crystal Data and Bond Distances [\AA] of \mathbf{B}

Orthorhombic	$P 2{ }_{1} 2_{1}{ }_{1}$
$\mathrm{a}=9.077(1) \AA$	$\mathrm{Z}=4$
$\mathrm{~b}=11.065(1) \AA$	$\mathrm{D}_{\mathrm{x}}=1.393 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{c}=17.106(1) \AA$	$\mathrm{R}_{\mathrm{int}}=0.017$
$\mathrm{~V}=1718.1(3) \AA$	$\mathrm{A}=293(2) \mathrm{K}$
$\mathrm{C} 19-\mathrm{N} 15-\mathrm{C} 8-\mathrm{N} 945.5(2)^{\circ}$	$\mathrm{C} 13-\mathrm{N} 9-\mathrm{C} 8-\mathrm{C} 528.8(2)^{\circ}$

Table 3
Elemental Analysis of New Compounds (Calcd./Found)

N°	Formula	C	H	N	O
$\mathbf{1 2}$	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{9}$	56.89	6.08	6.03	31.00
		56.75	6.01	5.81	31.38
$\mathbf{1 4}$	$\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{7}$	57.78	6.56	3.96	31.69
		57.95	6.38	4.33	31.38
$\mathbf{1 9}$	$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{6}$	55.99	5.49	12.72	21.79
		55.87	5.67	12.99	21.44
$\mathbf{2 0}$	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5}$	60.91	4.60	14.21	20.28
		61.26	4.79	13.91	20.01
$\mathbf{2 1}$	$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{6}$	58.63	5.58	4.56	31.24
$\mathbf{2 5}$	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{9}$	58.75	5.68	4.70	30.92
		55.04	5.54	6.42	32.99
		54.92	5.68	6.50	33.25

rated and methylene dichloride was added. The solution was washed with water, dried (sodium sulfate) then evaporated. The oil obtained crystallized in ether $\left(-40^{\circ} \mathrm{C}\right)$ and compound $\mathbf{1 4}$ was recristallized from ether.

1-[Trimethylsilyloxy-(3,4,5-trimethoxyphenyl)methyl]benzotriazole (16).
N-Trimethylsilylbenzotriazole (18) ($20 \mathrm{~g}, 0.105 \mathrm{~mol}$) was added to a stirred mixture of 3,4,5-trimethoxybenzaldehyde (20.5 $\mathrm{g}, 0.105 \mathrm{~mol}$) and potassium tert-butoxide ($0.020 \mathrm{~g}, 0.18 \mathrm{mmol}$) (exothermic). The water sensitive product 16 was obtained after 30 minutes of stirring.

1-(Benzo[1,3]dioxol-5-yl-trimethylsilyloxymethyl)benzotriazole (17).

This product was obtained by using the same procedure as for 16, starting from piperonal ($15.7 \mathrm{~g}, 0.105 \mathrm{~mol}$).

Methyl 1-[Benzotriazol-1-yl-(3,4,5-trimethoxyphenyl)methyl]pyroglutamate (19).

Triflic acid ($0.17 \mathrm{~g}, 0.1 \mathrm{ml}, 1.1 \mathrm{mmol}$) was added (syringe) to a stirred mixture of compound $16(20 \mathrm{~g}, 0.052 \mathrm{~mol})$ and methyl N trimethylsilylpyroglutamate (9) ($11.1 \mathrm{~g}, 0.052 \mathrm{~mol}$) in dichloromethane (20 ml). The solution was refluxed for 4 hours, washed with water and dried (sodium sulfate), giving product 19 as an oil. Crystallization from ethyl acetate gave 19a and 19b.

Table 4
Yields and Physical Properties of New compounds

N°	Yield (\%)	MP ${ }^{\circ} \mathrm{C}$ (solvent)	IR (KBr) $\vee \mathrm{cm}^{-1}$
11	100	ND	ND
12	45	145-6 (AcOEt)	1745, 1735, 1705, 1680, 1590, 1505, 1460, 1120
14	91	88-90 (ether)	1735, 1690, 1585, 1500, 1455, 1450, 1115
16	100	ND	ND
17	100	ND	ND
19	92	148-9 (AcOEt)	2360, 1760, 1720, 1600, 1510, 1470, 1130
20	91	20a : 137-9 (AcOEt)	2360, 1750, 1740, 1700, 1610, 1500, 1490, 1440, 1240
		20b : 148-9 (AcOEt)	
21	71	220	1755, 1720, 1590, 1510, 1465, 1120
22	100	ND	ND
25	<3	$145-7\left(\mathrm{H}_{2} \mathrm{O}\right)$	1725, 1705, 1685, 1645, 1585, 1500, 1455, 1450, 1125
26	table 1	oil	1740, 1700-1640, 1610, 1590, 1510, 1460, 1130

Methyl 1-[[2-(Methoxycarbonyl)-5-oxopyrrolidin-1-yl](phenyl)methyl]pyroglutamate (12).
A stirred mixture of compound $\mathbf{1 1}(16 \mathrm{~g}, 0.041 \mathrm{~mol})$ and trimethylchlorosilane ($20 \mathrm{ml}, 0.160 \mathrm{~mol}$) was refluxed for 10 hours. Methylene dichloride was added and the mixture was washed four times with water. The organic phase was dried (sodium sulfate) then evaporated. Ethyl acetate was added and the solution was cooled $\left(-40^{\circ} \mathrm{C}\right)$ for 10 hours, giving ester $\mathbf{1 2}$.
Methyl 1-[Methoxy-(3,4,5-trimethoxyphenyl)methyl]pyroglutamate (14).

3, 4, 5-Trimethoxybenzaldehyde ($12 \mathrm{~g}, 0.056 \mathrm{~mol}$) and methyl trimethylsilyl ether ($16 \mathrm{~g}, 0.152 \mathrm{~mol}$) were refluxed under nitrogen. Methyl N-trimethylsilylpyroglutamate (9) ($12.1 \mathrm{~g}, 0.056$ $\mathrm{mol})$ then triflic acid $(0.2 \mathrm{ml}, 0.34 \mathrm{~g}, 2.3 \mathrm{mmol})$ was added (syringe). After refluxing for 2 hours, the solution was evapo-

Methyl 1-(Benzo[1,3]dioxol-5-yl-benzotriazol-1-yl-methyl)pyroglutamate (20).

This compound was obtained by using the same procedure as for 19 , starting from compound $17(0.052 \mathrm{~mol})$.
3-(3,4,5-Trimethoxyphenyl)dihydropyrrolo[1,2-c]oxazole-1,5dione (21) and

Trimethylsilyl 1-[Trimethylsilyloxy-(3,4,5-trimethoxyphenyl)methyl]pyroglutamate (22).

N,O-Bis-trimethylsilylpyroglutamic acid (23) (90 g, 0.330 mol) was added (syringe) to a stirred mixture of $3,4,5-$ trimethoxybenzaldehyde ($60 \mathrm{~g}, 0.306 \mathrm{~mol}$) and potassium tertbutoxide ($0.41 \mathrm{~g}, 0.36 \mathrm{mmol}$). After heating at $100{ }^{\circ} \mathrm{C}$ for 4.5 hours, bis trimethylsilyl compound $\mathbf{2 2}$ was quantitatively obtained. This product was dissolved in methylene dichloride

Table 5
NMR Spectra of New Compounds

N°	$\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$
11	${ }^{1} \mathrm{H}: 0.16(\mathrm{~s}, 4 \mathrm{H}), 0.19(\mathrm{~s}, 5 \mathrm{H}), 1.85-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.86(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 1.8 \mathrm{H}), 3.76(\mathrm{~s}, 1.2 \mathrm{H}), 3.82(\mathrm{~s}, 2.1 \mathrm{H})$, $3.86(\mathrm{~s}, 6.9 \mathrm{H}), 3.8-3.9(0.6 \mathrm{H}), 4.35(\mathrm{dd}, \mathrm{J}=9,1.5 \mathrm{~Hz}, 0.4 \mathrm{H}), 6.58-6.68(\mathrm{~m}, 3 \mathrm{H})$
12	${ }^{1} \mathrm{H}: 1.80-2.77(\mathrm{~m}, 8 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 4.61(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H})$, 6.66 (s, 2H) ${ }^{13} \mathrm{C}: 23.2,24.4,29.7,30.7,51.7,52.1,56.2,59.9,60.8,63.1,68.1,106.6,129.8,138.1,152.8,172.0,173.3,175.9,176.2$
14	${ }^{1} \mathrm{H}: 1.95-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.60-3(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 1.1 \mathrm{H}), 3.41(\mathrm{~s}, 1.1 \mathrm{H}), 3.45(\mathrm{~s}, 1.9 \mathrm{H}), 3.78(\mathrm{~s}, 1.9 \mathrm{H}), 3.82,3.83,3.84$, $3.85,3.86(5 \mathrm{~s}, 9 \mathrm{H}), 3.8-3.9(0.6 \mathrm{H}), 4.27(\mathrm{dd}, \mathrm{J}=8.6,1.5 \mathrm{~Hz}, 0.4 \mathrm{H}), 6.21,(\mathrm{~s}, 0.6 \mathrm{H}), 6.22(\mathrm{~s}, 0.4 \mathrm{H}), 6.59(\mathrm{~s}, 1.2 \mathrm{H}), 6.61(\mathrm{~s}, 0.8 \mathrm{H})$
15	${ }^{1} \mathrm{H}: 3.73(\mathrm{~s}, 6 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 2 \mathrm{H}), 6.83(\mathrm{dt}, \mathrm{J}=8.9,2.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.03(\mathrm{dt}, \mathrm{J}=8.9,2.6 \mathrm{~Hz}, 4 \mathrm{H})$
16	${ }^{1} \mathrm{H}: 0.10(\mathrm{~s}, 9 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 6.74(\mathrm{~s}, 2 \mathrm{H}), 7.27-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.99-8.08(\mathrm{~m}, 1 \mathrm{H})$
17	$\begin{aligned} & { }^{1} \mathrm{H}: 0.07(\mathrm{~s}, 9 \mathrm{H}), 5.94(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-7.0(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.35 \\ & (\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{t}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}) \end{aligned}$
19a	${ }^{1} \mathrm{H}: 2.01-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.75(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}$, $2 \mathrm{H}), 7.44(\mathrm{td}, \mathrm{J}=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{td}, \mathrm{J}=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H})$ ${ }^{13} \mathrm{C}: 24.9,29.1,52.7,56.3,57.1,60.9,64.6,104.9,110.3,119.8,124.6,128.3,128.9,133.8,138.8,145.5,153.7,171.4,175.8$
19b	${ }^{1} \mathrm{H}: 1.96-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.80(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 5.08(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~s}$, 2H), 7.34-7.54 (m, 3H), 7.84 (s, 1H), 8.09 (d, J = 7.9 Hz, 1H) ${ }^{13} \mathrm{C}: 24.1,29.2,51.9,56.4,58.4,60.8,66.2,104.7,109.9,118.5,124.5,128.0,128.5,132.6,138.7,144.2,153.5,172.4,175.9$
20	${ }^{1} \mathrm{H}: 2-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.3-2.6(\mathrm{~m}, 2 \mathrm{H}), 2.6-2.8(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 1.5 \mathrm{H}), 3.42(\mathrm{~s}, 1.5 \mathrm{H}), 4.59(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.03(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}$, $0.5 \mathrm{H}), 5.95(\mathrm{dd}, \mathrm{J}=2.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6(\mathrm{~s}, 1 \mathrm{H}), 6.7-6.8(\mathrm{~m}, 3 \mathrm{H}), 7.3-7.9(\mathrm{~m}, 4 \mathrm{H}), 8.09(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H})$
21	${ }^{1} \mathrm{H}: 2.04-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.79(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 6 \mathrm{H}), 4.16(\mathrm{dd}, \mathrm{J}=8.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 2 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H})$ ${ }^{13} \mathrm{C}: 21.6,29.6,56.4,56.7,60.9,76.6,103.5,128.4,138.8,153.8,169.3,174.4$
22	${ }^{1} \mathrm{H}: 0.18(\mathrm{~s}, 9.7 \mathrm{H}), 0.33(\mathrm{~s}, 8.3 \mathrm{H}), 1.80-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.79(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{dd}, \mathrm{J}=8.8,1.3 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.84(\mathrm{~s}$, $1 \mathrm{H}), 3.85(\mathrm{~s}, 8 \mathrm{H}), 4.36(\mathrm{dd}, \mathrm{J}=8.8,1.3 \mathrm{~Hz}, 0.3 \mathrm{H}), 6.62(\mathrm{~s}, 2 \mathrm{H}), 6.65(\mathrm{~s}, 0.3 \mathrm{H}), 6.67(\mathrm{~s}, 0.7 \mathrm{H})$
25	${ }^{1} \mathrm{H}:\left(\mathrm{CD}_{3} \mathrm{OD}\right): 1.85-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.1-2.3(\mathrm{~m}, 1 \mathrm{H}), 2.3-2.5(\mathrm{~m}, 4 \mathrm{H}), 2.5-2.75(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 4.51(\mathrm{dd}, \mathrm{J}=7,1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.62(\mathrm{dd}, \mathrm{J}=7,2 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 2 \mathrm{H})$ ${ }^{13} \mathrm{C}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 24.8,25.4,30.4,31.2,56.6,60.9,61.1,63.0,67.6,107.8,131.3,139.3,154.3,174.9,175.5,178.4,178.6$
26a	$\begin{aligned} & { }^{1} \mathrm{H}: \mathrm{D}^{-2}-25(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.87(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.16(\mathrm{t}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 3 \mathrm{H}) \text {, } \\ & 6.87(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H}) \end{aligned}$
26b	${ }^{1} \mathrm{H}: 2.04-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.88(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.16(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}$, 2H), $6.39(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H})$
26	$\begin{aligned} & { }^{13} \mathrm{C}: 24.5,24.6,29.8,55.2,55.4,56.1,56.2,58.4,58.6,59.1,59.2,60.7,60.9,104.6,107.7,113.7,114.1,128.5,129.9,130.4,131.9,133.7, \\ & 134.9,153.1,153.3,159.2,159.5,176.1,176.2,176.3,176.6 \end{aligned}$

(165 ml), then triflic acid ($2 \mathrm{ml}, 3.4 \mathrm{~g}, 22.8 \mathrm{mmol}$) was added (syringe). After 4 hours, diethyl ether was added and the white solid obtained was filtered. Washing this solid with a sodium hydrogenocarbonate solution remove pyroglutamic acid and a very small amount of diacid 25. After drying, the solid was refluxed in ether to give lactone 21 as a white powder.

N -(3,4,4',5-Tetramethoxybenzhydryl)pyroglutamic Acid (26).
Triflic acid ($0.4 \mathrm{ml}, 0.68 \mathrm{~g}, 4.6 \mathrm{mmol}$) was slowly added (syringe) to a stirred mixture of lactone $21(2 \mathrm{~g}, 6.5 \mathrm{mmol})$ and anisole ($2.1 \mathrm{~g}, 19.5 \mathrm{mmol}$). After 96 hours methylene dichloride and a solution of potassium carbonate in water were added. The aqueous phase was acidified giving acids 26 as a 66/34 mixture of diastereoisomers.

X-Ray Cristal Structure Determination of B [19].

Crystals of compound \mathbf{B} suitable for X-ray investigations were obtained by slow evaporation of a methanol solution at room temperature. The structure was solved using the SIR97 program [22]; the refinement was performed using SHELXL97 [23].

Acknowledgments.

We wish to thank the Norbert Segard Foundation for financial grants.

REFERENCES AND NOTES

[1a] B. Rigo, P. Gautret, A. Legrand, J.-P. Hénichart and D. Couturier, Synlett, 998 (1997); [b] B. Rigo, P. Gautret, A. Legrand, J.-P. Hénichart and D. Couturier, J. Heterocyclic Chem., 35, 567 (1998); [c] A. Legrand, B. Rigo, P. Gautret, J.-P. Hénichart and D. Couturier, J. Heterocyclic Chem., 36, 1263 (1999).
[2] L. Wilson and M. Friedkin, Biochemistry, 6, 3126 (1967); L. Wilson and J. Bryan, Adv. Cell. Mol. Biol., 3, 21 (1974); J. D. Loike, C. F. Brewer, H. Sternlich, W. J. Gensler and S. B. Horwitz, Cancer Res., 38, 2688 (1978); L. Wilson, Biochemistry, 9, 4999 (1970).
[3] Developmental Therapeutic Program, Division of Cancer Treatment, National Cancer Institute, Bethesda, Maryland.
[4] C. M. Lin, S. B. Singh, P. S. Chu, R. O. Dempcy, J. M. Schmidt, J. M. Pettit and E. Hamel, Mol. Pharmacol., 34, 200 (1988).
[5] G. R. Pettit, B. Toki, D. L. Herald, P. Verdier-Pinard, M. R. Boyd, E. Hamel and R. K. Pettit, J. Med. Chem., 41, 1688 (1998).
[6] A. T. McGown and B. W. Fox, Anti-cancer Drug Design, 3, 249 (1989).
[7] F. Camus, B. Norberg, A. Legrand, B. Rigo, F. Durant and J. Wouters, Acta Cryst. (C), 56, 193 (2000).
[8a] Separation of the four isomeric esters of HEI 81, obtained from the reaction described in Scheme 2 [1a], was realized by the Janssen Research Foundation, by using chiral chromatography. [b] Products 11, 14, 22 were obtained as mixtures of diastereoisomers. Generally speaking, the same ratio of diastereoisomers was never obtained in two seemly similar experiments. These ratios (and the reaction time) seem to depend strongly on the exact temperature, reaction time and the amount and
hydration status of the catalyst. Because each of the diastereoisomers yields the same acyl iminium salt, the stereochemistry of these intermediates was not determined.
[9] E. Roth, J. Altman, M. Kapon and D. Ben-Ishai, Tetrahedron, 51, 801 (1995).
[10] We have already described a synthesis of ester 9 by using chlorotrimethylsilane and triethylamine, [11] but a procedure utilizing hexamethyldisilazane [12] is easier to perform.
[11] B. Rigo, C. Lespagnol and M. Pauly, J. Heterocyclic Chem., 25, 49 (1988).
[12] S. El Ghammarti, B. Rigo, H. Mejdi, J.-P. Hénichart and D. Couturier, J. Heterocyclic Chem., 35, 555 (1998).
[13] A. R. Katritzky, X. Lan, J. Z. Yang and O. V. Denisko, Chem. Rev., 98, 409 (1998); A. R. Katritzky, S. A. Henderson and B. Yang, J. Heterocyclic Chem., 35, 1123 (1998); A. R. Katritzky, J. Heterocyclic Chem., 36, 1501 (1999).
[14] A. R. Katritzky, J. Pernak, W. Q. Fan and F. Saczewski, J. Org. Chem., 56, 4431 (1991); A. R. Katritzky, Y. Guowei, L. Xiangfu and Z. Xiaohong, J. Org. Chem., 58, 2086 (1993).
[15] A. R. Katritzky, J. Pernak and W. Q. Fan, Synthesis, 868 (1991).
[16] A. R. Katritzky, G. F. Zhang, J. Pernak and W. Q. Fan, Heterocycles, 36, 1253 (1993).
[17] A. Legrand, B. Rigo, J.-P. Hénichart, B. Norberg, F. Camus, F. Durant and D. Couturier, J. Heterocyclic Chem., 37, 215 (2000).
[18] A study on the synthesis of this type of lactones and general-
ization of the reaction described in Scheme 9, will be described in a next paper.
[19] F. Camus, B. Norberg, A. Bourry, B. Rigo and F. Durant, Acta Cryst. (E), 57, 439 (2001).
[20] B. Rigo, P. Cauliez, D. Fasseur and D. Couturier, Synth. Commun., 18, 1247 (1988); B. Rigo, D. Valligny, S. Taisne and D. Couturier, Synth. Commun., 18, 167 (1988); B. Rigo, D. Fasseur, P. Cauliez and D. Couturier, Synth. Commun., 19, 2321 (1989); B. Rigo, I. Gouni, S. El Ghammarti, P. Gautret and D. Couturier, Synth. Commun., 24, 3055 (1994); P. Cauliez, D. Couturier, B. Rigo, D. Fasseur and P. Halama, J. Heterocyclic Chem., 30, 921 (1993); P. Cauliez, B. Rigo, D. Fasseur and D. Couturier, J. Heterocyclic Chem., 33, 1073 (1996).
[21] A. Bourry, B. Rigo, G. Sanz and D. Couturier, J. Heterocyclic Chem., 39, 119 (2002).
[22] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori and R. Spagna, J. Appl. Cryst., 32, 115 (1999).
[23] F. M. Sheldrick, SHELXL97, University of Göttingen, Germany (1997).
[24] The low amount of the N-acyliminium salt analogs to $\mathbf{2 4 Z}$ explains some results on amidoalkylations of aromatics with the adduct of glyoxylic acid and pyroglutamic esters [9] and a recent review deals on the origin of endo selectivity observed in some reactions of bicyclic oxazololactams [25].
[25] M. D. Groaning and A. I. Meyers; Tetrahedron, 56, 9843 (2000).

